

Test Report

Document No.	00782-21-0416 Copy No. 1 Number of pages 42
Apparatus	Fuse-switch-disconnector
Designation	TES-00/800 TES-1/800
Serial Number	Test samples
Manufacturer	THS Componentes Elétricos Ltda Rua Irineu Dias da Rosa, 25 Chac 3 Marias - Sorocaba - SP CEP: 18105-310 - BRAZIL
Client	THS Componentes Elétricos Ltda Rua Irineu Dias da Rosa, 25 Chac 3 Marias - Sorocaba - SP CEP: 18105-310 - BRAZIL
Date(s) of test(s)	06 to 11 August 2021
Tested by	IPH Institut "Prüffeld für elektrische Hochleistungstechnik" GmbH Landsberger Allee 378A 12681 Berlin GERMANY
Test(s) performed	Test sequence I: General performance characteristics

The apparatus, constructed in accordance with the description, drawings and photographs incorporated in this document has been subjected to the series of proving tests in accordance with: IEC 60947-3: 2020-04

Notes

STL-Member

CESI Group members are founder members of the SHORT-CIRCUIT TESTING LIAISON (STL) which has been established in 1969. STL is a forum for voluntary international cooperation of testing organizations.

CESI Group Test Documents description

Type Test Certificate of

Issued for type tests of high voltage products (> 1 kV_{ac}; > 1,5 kV_{dc}), which have successfully been carried out in full compliance with the relevant specifications or standards and STL Guides valid at the time of the test. The Type Test Certificate consists of documents unequivocally identifying the test object and describes all conditions under which the tests were conducted. It gives evidence of the unobjectionable behavior of the test object during the tests in line with the normative documents applied as well as of the results of successful testing.

Test Certificate of (complete / selected) Type Tests

Issued if type tests of low voltage products (< 1 kV_{ac} ; < 1,5 kV_{dc}) requested by the relevant product standard were passed. For these tests the equipment under test must be clearly identified by technical description, drawings, and additional specifications.

Certificate of Design Verification

Issued for passed design verification tests according to IEC 61439. For these tests the equipment under test must be clearly identified by technical description, drawings, and additional specifications.

Type Test Report

Issued for high and low voltage products if parts of selected type tests have been passed; those shall be carried out in full compliance with the relevant standards but (for high voltage products) do not fulfill all STL requirements for issuing a Type Test Certificate. For these tests the equipment under test must be clearly identified by technical description, drawings, and additional specifications.

Test Report

Issued for all other tests on high and low voltage products which have been carried out according to specifications, standards and/or client instructions

On-Site Test Record

Issued as a record of results acquired during the on-site tests / measurements

Test Award

Can be additionally issued for all named types of test documents above if the tests to be referenced were passed

SHEET 3

Ratings and characteristics assigned by the manufacturer and proven by test

Description		Rating	Verified
Rated operational voltage	U_e	800 V	
Rated insulation voltage	Ui	1000 V	x
Rated impulse withstand voltage	\mathbf{U}_{imp}	8 kV	x
Rated operational current TES-00/800 TES-1/800	l _e	160 A 250 A	x x
Conventional free air thermal current TES-00/800 TES-1/800	I _{th}	160 A 250 A	x x
Rated frequency		50 Hz	
Utilization category		AC-21B	x
Degree of pollution		3	
Material group		Illa	
Overvoltage category		IV	

The ratings of the test object marked with **X** and related to the scope of test(s) performed have been proved.

Conte	ents	Sheet
1.	Present at the test	
2.	Test performed	5
3.	Identity of the test object	6
3.1	Technical data and characteristics	
3.2	Identity documents	6
4.	Test sequence I: General performance characteristics	7
4.1	Temperature-rise	7
4.2	Temperature-rise	
4.3	Making and breaking capacities	
4.4	Dielectric verification	
4.5	Leakage current	
4.6	Leakage current	
4.7	Strength of actuator mechanism	
5.	Photos	
6.	Oscillograms	
7.	Drawings	

Distribution

Copy No. 1 in English:

Copy No. 1

THS Componentes Elétricos Ltda

1. Present at the test

Mr. Jens Haring

IPH test engineer in charge

2. Test performed

Test sequence I: General performance characteristics

- Temperature-rise
- Dielectric properties
- Making and breaking capacities
- Dielectric verification
- Leakage current
- Temperature-rise verification
- Strength of actuator mechanism

3. Identity of the test object

3.1 Technical data and characteristics

The technical data and characteristics of the test object are defined by the following parameters and specified by the client.

Test object: Type: Manufacturer: Serial No.: Year of manufacture:	Fuse-switch-disconnector TES-00/800 TES-1/800 THS Componentes Elétricos Ltda Test samples 2021	
Characteristics:	Number of poles Kind of current Breaking arrangement Suitable for isolation Manual operation	3 in horizontal design 3 AC, 50 Hz Double opening Yes Dependent
	Dimension H x W x D TES-00/800 TES-1/800	172 mm x 106 mm x 88 mm 294 mm x 210 mm x 138 mm
	Terminal torque TES-00/800 TES-1/800	15 Nm 25 Nm
Material:	Material of base	Polyamide 6.6, 20% glass fiber reinforced, flame retardant rated V0 acc. to UL-94
	Material of cover	Polyamide 6.6, flame retardant rated V0 acc. to UL-94
	Material of actuator	Polyamide 6.6, 20% glass fiber reinforced, flame retardant rated V0 acc. to UL-94
	Material of terminals/contacts Material of compression spring	Silver plated copper C11000 Hard drawn carbon steel

3.2 Identity documents

The manufacturer confirms that the test object has been manufactured in compliance with the drawings given in this document. IPH did not verify this compliance in detail. The identity of the test object is fixed by the following drawings and data submitted by the client:

Name of drawing	Drawing No.	Date of drawing	Author	Notes
Chave NH00/000		16/08/21	THS	Sheet 40
Chave NH1		16/08/21	THS	Sheet 41
SECCIONADORA NH TES 800V - SOB CARGA			THS	Sheet 42

4. Test sequence I: General performance characteristics

4.1 Temperature-rise

4.1.1 Test laboratory

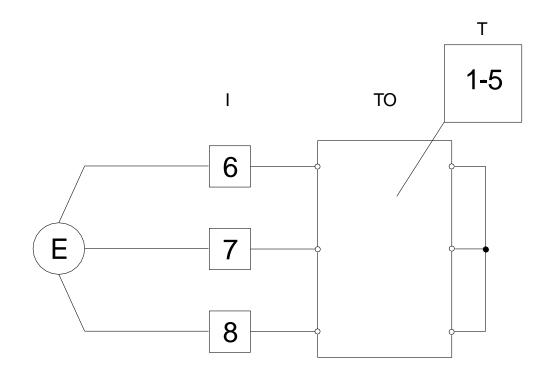
Low-voltage test laboratory, test rooms 4 and 7

4.1.2 Normative document

IEC 60947-3: 2020-04, Sub-clause 9.3.4.2

4.1.3 Required test parameters

Test current TES-00/800:	160 A, three-phase
Test current TES-1/800:	250 A, three-phase
Test frequency:	50 Hz


4.1.4 Test arrangement

The test object was mounted, as specified by the manufacturer, in normal position of use.

All terminals were connected by 4-m flexible copper cables with a cross-section of 70 mm² for TES-00/800 and 120 mm² for TES-1/800.

The torque of the terminal screws was 15 Nm for TES-00/800 and 25 Nm for TES-1/800.

4.1.5 Test and measuring circuits

- E Power supply
- I Current measurement
- T Temperature measurement
- TO Test object

Figure 1: Test circuit for the temperature-rise test

Technical data of measuring circuits

Measuring point Measured quantity		Measuring sensor		
1 - 5	Temperature	Cu/constantan thermocouples		
6	Test current L1	st current L1 Rogowski coil, integrator		
7	Test current L2	Rogowski coil, integrator		
8	Test current L3	Rogowski coil, integrator		
Measuring instruments: Measuring points 1 - 5: ALMEMO® 5690- Measuring points 6 - 8: Digital Display SPE		2 XU		

4.1.6 Test results

4.1.6.1 TES-00/800

The temperature-rise test was carried out with THS NH00 fuse links (800V, 160A, gL/gG, 50kA, 12W).

Date of test:	10 August 2021
Test current:	161 A / 160 A / 160 A
Test frequency:	50 Hz

Condition of test object:	New
Ambient air:	25.7 °C

poi	eas. int⁄ ase	Designation	Classification	Material	Final temperature measured [°C]	Final temperature rise [K]	Temperature-rise limit permitted [K]
	L1			Copper,	83.3	57.6	
1	L2	Upper terminals	Terminal	silver-coated	92.8	67.1	70
	L3			Since codeca	76.3	50.6	
	L1				79.1	53.4	
2	L2	Lower terminals	Terminal	Copper, silver-coated	79.4	53.7	70
	L3				72.3	46.6	
3	-	Manual operating means	Manual actuator	Insulating material	36.7	11.0	25
4	-	Enclosure on the front side, intended to be touched but not hand hold	Exposed part	Insulating material	62.5	36.8	40
5	-	Enclosure, not touched during normal operation	Exposed part	Insulating material	73.5	47.8	50

The final temperature-rise values measured did not exceed the temperature-rise limits defined by IEC 60947-3, Sub-clause 8.2.2.

4.1.6.2 TES-1/800

The temperature-rise test was carried out with THS NH1 fuse links (800V, 250A, gL/gG, 50kA, 23W).

Date of test:	10 August 2021
Test current:	253 A / 251 A / 251 A
Test frequency:	50 Hz

Condition of test object:

Ambient air:

New 26.5 °C

poi	eas. nt∕ ase	Designation	Classification	Material	Final temperature measured [°C]	Final temperature rise [K]	Temperature-rise limit permitted
	1.4						[]
	L1			Copper,	70.3	43.8	
1	L2	Upper terminals	Terminal	silver-coated	93.8	67.3	70
	L3				71.8	45.3	
	L1				58.5	32.0	
2	L2	Lower terminals	Terminal	Copper, silver-coated	73.7	47.2	70
	L3			Silver Coaled	63.2	36.7	
3	-	Manual operating means	Manual actuator	Insulating material	31.4	4.9	25
4	-	Enclosure on the front side, intended to be touched but not hand hold	Exposed part	Insulating material	51.7	25.2	40
5	-	Enclosure, not touched during normal operation	Exposed part	Insulating material	46.2	19.7	50

The final temperature-rise values measured did not exceed the temperature-rise limits defined by IEC 60947-3, Sub-clause 8.2.2.

4.2 Dielectric properties

4.2.1 Test laboratory

Low-voltage test laboratory, test room 4

4.2.2 Normative document

IEC 60947-3: 2020-04, Sub-clause 9.3.4.3

4.2.3 Required test parameters

-	Verification of impulse withstand volta	ige	
	Lightning impulse voltage 1.2/50 μs :	12.3 kV	Insulation of isolating distances
	Lightning impulse voltage $1.2/50 \ \mu s$:	9.8 kV	Phase-to-phase insulation and phase-to-earth insulation
	No. of tests:	5 each	
	Polarity:	Positive and negative	e to earth
-	Power-frequency withstand verification		
	50 Hz AC test voltage:	2200 V	
	Duration of test: 6	0 s each	
-	Verification of creepage distances		
	Minimum creepage distance:	16 mm	(Degree of pollution 3)
-	Leakage current		
	Test voltage:	880 V (1.1 x U _e)	
	Test frequency:	50 Hz	

4.2.4 Test arrangement

Actuators of insulating material and non-metallic enclosure intended to be touched were covered by a metal foil.

4.2.5 Test results

4.2.5.1 TES-00/800

• Verification of impulse withstand voltage and of power-frequency withstand of solid insulation

Date of test: 11 August 2021

Atmospheric conditions during test

Air temperature:	24.1 °C
Air pressure:	1013 mbar
Air humidity:	51 %

Voltage applied to	Earthed	Position of operation	Applied test voltage 1.2/50 μs	Results	Applied test voltage 50 Hz, 60 s	Results
			kV	Number of tests ⁄ disruptive discharges	V	Disruptive discharges
All terminals of the main circuit	Enclosure / mounting plate	Close	± 9.8	5 each/0	2200	0
connected together	connected		± 9.8	5 each/0	2200	0
Each pole of the main circuit	Other poles connected together and	Close	± 9.8	5 each/0	2200	0
circon	to enclosure	Open	± 9.8	5 each/0	2200	0
Line terminals connected together	Load terminals connected together	Open	± 12.3	5 each/0	2200	0

• Verification of creepage distances

The minimum creepage distance measured to Annex G is 27 mm. The required minimum creepage distance limit has been observed.

Leakage current

The leakage current of max. 8.8 μ A measured, was less than the permissible value of 2 mA.

4.2.5.2 TES-1/800

• Verification of impulse withstand voltage and of power-frequency withstand of solid insulation

Date of test: 11 August 2021

Atmospheric conditions during test

Air temperature:	24.1 °C
Air pressure:	1013 mbar
Air humidity:	51 %

Voltage applied to	Earthed	Position of operation	Applied test voltage 1.2/50 μs	Results	Applied test voltage 50 Hz, 60 s	Results
			kV	Number of tests ⁄ disruptive discharges	V	Disruptive discharges
All terminals of the main circuit	Enclosure / mounting plate	Close	± 9.8	5 each/0	2200	0
connected together	place	Open	± 9.8	5 each/0	2200	0
Each pole of the main circuit	Other poles connected together and	Close	± 9.8	5 each/0	2200	0
Circon	to enclosure	Open	± 9.8	5 each/0	2200	0
Line terminals connected together	Load terminals connected together	Open	± 12.3	5 each/0	2200	0

• Verification of creepage distances

The minimum creepage distance measured to Annex G is 54 mm. The required minimum creepage distance limit has been observed.

• Leakage current

The leakage current of max. 4.0 μ A measured, was less than the permissible value of 2 mA.

4.3 Making and breaking capacities

4.3.1 Test laboratory

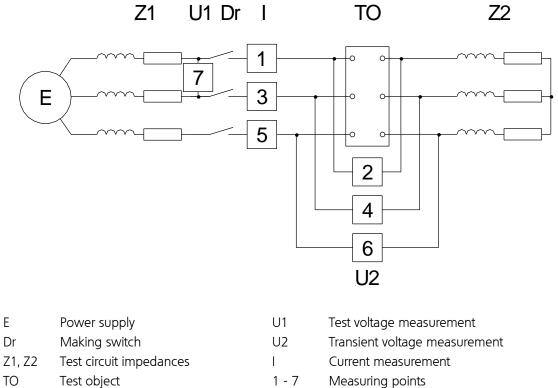
Low-voltage test laboratory, test room 4

4.3.2 Normative document

IEC 60947-3: 2020-04, Sub-clause 9.3.4.4

4.3.3 Required test parameters

	TES-00/800	TES-1/800
	AC-21B	AC-21B
Test voltage:	840 V (1.05 x U _e)	840 V (1.05 x U _e)
Test current (making):	240 A (1.5 x l _e)	375 A (1.5 x l _e)
Test current (breaking):	240 A (1.5 x l _e)	375 A (1.5 x I _e)
Power factor:	0.95	0.95
Test frequency:	50 Hz	50 Hz
Number of operating cycles:	5	5


4.3.4 Test arrangement

The test object was mounted, as specified by the manufacturer, in normal position of use. The terminals were connected with 4-m long, insulated single-core copper cables with a cross-section of 70 mm² per pole for TES-00/800 and with 120 mm² for TES-1/800.

The torque of the screws at the terminals was 15 Nm for TES-00/800 and 25 Nm for TES-1/800.

4.3.5 Test and measuring circuits

1 - 7 Measuring points

Figure 2: Circuit for the test of making and breaking capacities

Measuring point	Measured quantity	Measuring sensor					
1	Current L1	Shunt					
3	Current L2	Shunt					
5	Current L3	Shunt					
2	Voltage across pole L1	RC divider					
4	Voltage across pole L2	RC divider					
6	Voltage across pole L3	RC divider					
7	Test voltage	Voltage transformer					
Measuring instruments:							
Measuring points 1 - 6: BAKKER transient recorder with BE 256 A/D transducers							
Measuring point 7: Digital voltmeter							

Technical data of measuring circuits

4.3.6 Test results

4.3.6.1 TES-00/800

Date of test:	
Test requirement:	
Operating cycle:	
Connection of test object:	

06 August 2021 Test of making and breaking capacities AC-21B 5 x CO-t (t - dead time) - Power supply at the upper terminals - Load circuit at the lower terminals Top: 50 mm, sides: 20 mm New

Distance of metallic screen from test object: Condition of test object before test:

Test parameters:

Test No.			4213959	4213960	4213961	4213962	4213963
Operating cycle			1. CO-t-	2. CO-t-	3. CO-t-	4. CO-t-	5. CO
Dead time	S		30	30	30	30	-
Applied voltage	V		850	850	850	850	850
		L1	347	347	347	347	347
Prospective peak current	А	L2	345	345	345	345	345
		L3	349	349	349	349	349
		L1	245	245	245	245	245
Prospective test current r.m.s.	А	L2	241	241	241	241	241
		L3	247	247	247	247	247
	Av	erage	244	244	244	244	244
Power factor $\cos \phi$			0.94	0.94	0.94	0.94	0.94
		L1	246	245	245	244	244
Breaking current	А	L2	244	244	243	243	243
		L3	248	247	247	247	246
		L1	490	492	491	492	492
Recovery voltage	V	L2	506	505	504	504	504
		L3	490	491	490	491	490
Average p	hase-to-p	ohase	858	859	857	859	858
		L1	13.7	14.3	14.3	14.2	14.1
Joule integral 10	³ A ² s	L2	13.6	14.0	13.9	13.9	13.9
		L3	13.7	14.6	14.5	14.4	14.3
Duration of current flow	ms		226	236	237	236	235
		L1	7.72	5.34	4.88	6.60	7.40
Arcing time ms		L2	7.72	0.40	0.04	1.64	2.46
		L3	2.90	5.30	4.86	6.62	7.38
Notes			-	-	-	-	-
Evaluation			ОК	ОК	ОК	ОК	ОК

Evaluation:

OK - The test object was able to make and break properly.

Condition of test object after test:

Immediately after the test of making and breaking capacities, the switching device was capable of properly opening and closing during a no-load operation. The force required for opening measured after the test was 66 N and did not exceed the permissible maximum value of 400 N (one-hand operation, table 17 of IEC 60947-1).

4.3.6.2 TES-1/800

Date of test:	06 August 2021
Test requirement:	Test of making and breaking capaciti
Operating cycle:	5 x CO-t (t - dead time)
Connection of test object:	- Power supply at the upper terminals
	- Load circuit at the lower terminals

Distance of metallic screen from test object: Condition of test object before test:

ties AC-21B ls Top: 50 mm, sides: 20 mm New

Test parameters:

Test No.			4213965	4213966	4213967	4213968	4213969
Operating cycle			1. CO-t-	2. CO-t-	3. CO-t-	4. CO-t-	5. CO
Dead time	s		30	30	30	30	-
Applied voltage	V		850	850	850	850	850
		L1	543	543	543	543	543
Prospective peak current	А	L2	562	562	562	562	562
		L3	552	552	552	552	552
		L1	381	381	381	381	381
Prospective test current r.m.s.	А	L2	392	392	392	392	392
		L3	390	390	390	390	390
	Av	erage	388	388	388	388	388
Power factor $\cos \phi$			0.90	0.90	0.90	0.90	0.90
		L1	381	380	379	379	379
Breaking current	А	L2	392	392	390	390	390
		L3	390	389	385	388	388
		L1	485	483	485	483	485
Recovery voltage	V	L2	501	500	498	500	497
		L3	485	487	484	483	484
Average p	hase-to-p	phase	849	849	847	846	846
		L1	32.3	31.0	27.1	28.9	37.0
Joule integral 10	D ³ A ² s	L2	34.9	32.9	28.1	30.3	37.8
		L3	33.6	32.3	27.9	29.2	37.9
Duration of current flow	ms		221	214	186	196	265
		L1	6.88	13.7	26.6	0.980	3.14
Arcing time	ms	L2	6.92	18.7	21.6	9.50	2.36
		L3	2.02	18.7	26.3	4.54	3.14
Notes			-	-	-	-	-
Evaluation			ОК	ОК	ОК	ОК	ОК

Evaluation:

OK - The test object was able to make and break properly.

Condition of test object after test:

Immediately after the test of making and breaking capacities, the switching device was capable of properly opening and closing during a no-load operation. The force required for opening measured after the test was 121 N and did not exceed the permissible maximum value of 400 N (one-hand operation, table 17 of IEC 60947-1).

4.4 Dielectric verification

4.4.1 Test laboratory

Low-voltage test laboratory, test room 4

4.4.2 Normative document

IEC 60947-3: 2020-04, Sub-clause 9.3.4.5

4.4.3 Required test parameters

Test voltage:	1600 V (2 x U _e)
Test frequency:	50 Hz

4.4.4 Test arrangement

The test object was disconnected and removed from the equipment for the switching tests.

4.4.5 Test results

Date of test: 10 August 2021

After the test of making and breaking capacities, an AC voltage withstand test was carried out at AC 1600 V.

The test voltage was applied:

- between all the terminals of the main circuit connected together and the enclosure with closed and opened contacts,
- between each pole of the main circuit and the other poles connected together and to the enclosure with closed and opened contacts.

During each test period of 60 s, no disruptive discharges occurred.

4.5 Leakage current

4.5.1 Test laboratory

Low-voltage test laboratory, test room 4

4.5.2 Normative document

IEC 60947-3: 2020-04, Sub-clause 9.3.4.6

4.5.3 Required test parameters

Test voltage:	880 V (1.1 x U _e)
Test frequency:	50 Hz

4.5.4 Test arrangement

See Sub-clause 4.4.4, Sheet 18

4.5.5 Test results

Date of test: 10 August 2021

After the dielectric verification, the leakage current was measured across open contacts and between closed contacts and the enclosure at 110 % rated operational voltage.

The measured leakage current was 4.1 μA for TES-00/800 and 2.9 μA for TES-1/800 which is lower than the permissible value of 2 mA.

4.6 Temperature-rise verification

4.6.1 Test laboratory

Low-voltage test laboratory, test rooms 4 and 7

4.6.2 Normative document

IEC 60947-3: 2020-04, Sub-clause 9.3.4.7

4.6.3 Required test parameters

Test current TES-00/800:	160 A, three-phase
Test current TES-1/800:	250 A, three-phase
Test frequency:	50 Hz

4.6.4 Test arrangement

See Sub-clause 4.1.4, Sheet 7

4.6.5 Test and measuring circuits

See Sub-clause 4.1.5, Sheet 8

4.6.6 Test results

4.6.6.1 TES-00/800

The temperature-rise verification was carried out with THS NH00 fuse links (800V, 160A, gL/gG, 50kA, 12W).

Date of test:	09 August 2021
Test current:	160 A / 161 A / 161 A
Test frequency:	50 Hz

Condition of test object:	Prestressed
Ambient air:	26.6 °C

poi	eas. int⁄ ase	Designation	Classification	Material	Final temperature measured [°C]	Final temperature rise [K]	Temperature-rise limit permitted [K]					
	L1				85.4	58.8						
1	L2	Upper terminals	Terminal	Copper, silver-coated	96.0	69.4	80					
	L3			silver-coaled	84.6	58.0						
	L1				76.4	49.8						
2	L2	Lower terminals	Terminal	Terminal	Terminal	Terminal	Terminal	Terminal	Copper, silver-coated	79.4	52.8	80
	L3			Silver coaled	69.3	42.7						
3	-	Manual operating means	Manual actuator	Insulating material	36.0	9.4	35					
4	-	Enclosure on the front side, intended to be touched but not hand hold	Exposed part	Insulating material	63.4	36.8	50					
5	-	Enclosure, not touched during normal operation	Exposed part	Insulating material	82.8	56.2	60					

The final temperature rise measured did not exceed the permissible temperature-rise limits.

4.6.6.2 TES-1/800

The temperature-rise verification was carried out with THS NH1 fuse links (800V, 250A, gL/gG, 50kA, 23W).

Date of test:	09 August 2021
Test current:	253 A / 251 A / 252 A
Test frequency:	50 Hz

Condition of test object:

Prestressed

Ambient air:

26.4 °C

poi	eas. int⁄ ase	Designation	Classification	Material	Final temperature measured	Final temperature rise	Temperature-rise limit permitted
					[℃]	[K]	[K]
	L1			_	66.2	39.8	
1	L2	Upper terminals	Terminal	Copper, silver-coated	85.0	58.6	80
	L3				70.6	44.2	
	L1				53.4	27.0	
2	L2	Lower terminals	Terminal	Copper, silver-coated	72.2	45.8	80
	L3			Since codica	59.4	33.0	
3	-	Manual operating means	Manual actuator	Insulating material	31.1	4.7	35
4	-	Enclosure on the front side, intended to be touched but not hand hold	Exposed part	Insulating material	51.8	25.4	50
5	-	Enclosure, not touched during normal operation	Exposed part	Insulating material	48.5	22.1	60

The final temperature rise measured did not exceed the permissible temperature-rise limits.

4.7 Strength of actuator mechanism

4.7.1 Test laboratory

Low-voltage test laboratory, test room 7

4.7.2 Normative document

IEC 60947-3: 2020-04, Sub-clause 9.3.4.8

4.7.3 Required test parameters

Minimum operating force:	150 N
Maximum operating force:	400 N

Test performed:

One-hand operation

4.7.4 Test arrangement

The fixed and the moving contact parts of pole L3 were kept closed by bore and split-pin.

4.7.5 Test results

Date of test: 10 August 2021

The force F necessary for opening the test object was measured before the strength of the actuator test and is 52.3 N for TES-00/800 and 133.7 N for TES-1/800.

The actuator of TES-00/800 was subjected to the test force of 157 N (3 x F) according to IEC 60947-1, table 17 (one-hand operation). The force was applied without shock to the actuator in a direction to open the contacts for a period of 10 s.

The actuator of TES-1/800 was subjected to the maximum test force of 400 N according to IEC 60947-1, table 17 (one-hand operation). The force was applied without shock to the actuator in a direction to open the contacts for a period of 10 s.

After the test of strength of actuator mechanism no damage was found on the switch-disconnector. The actuator mechanism did not give "OFF" position when the contacts were held closed. The position indication complies with the requirements defined in IEC 60947-3, Sub-clause 9.2.6.

5. Photos

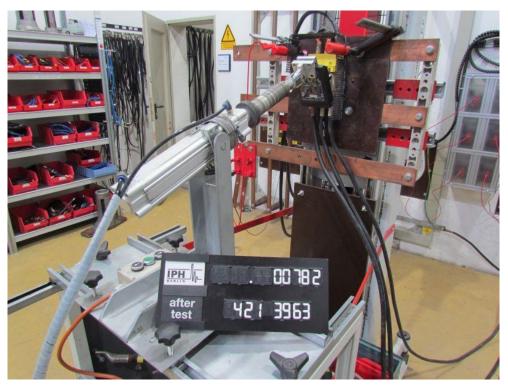


Photo 1: Test object TES-00/800 after the verification of making and breaking capacities

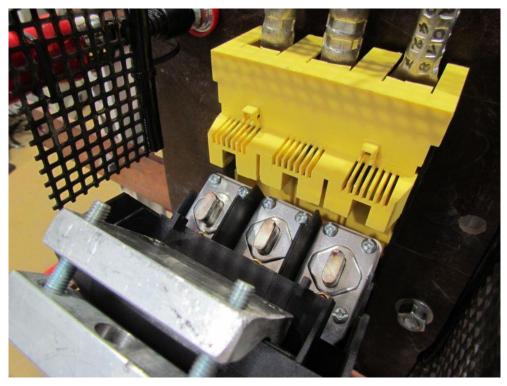


Photo 2: Test object TES-00/800 after the verification of making and breaking capacities

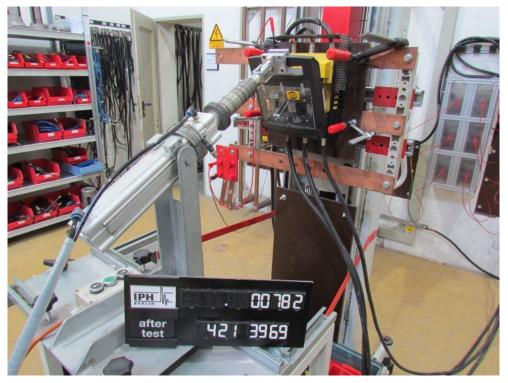


Photo 3: Test object TES-1/800 after the verification of making and breaking capacities

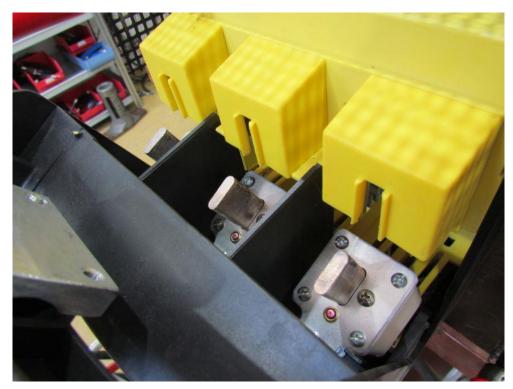


Photo 4: Test object TES-1/800 after the verification of making and breaking capacities

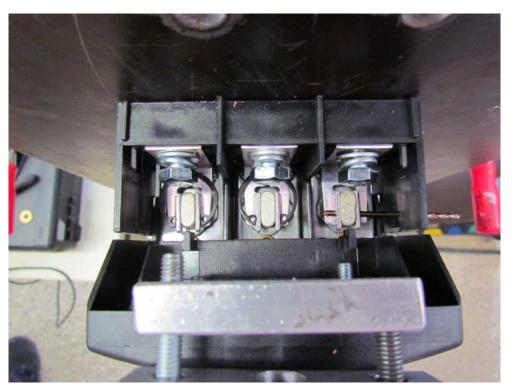


Photo 5: Test object TES-00/800 before the verification of the strength of actuator mechanism

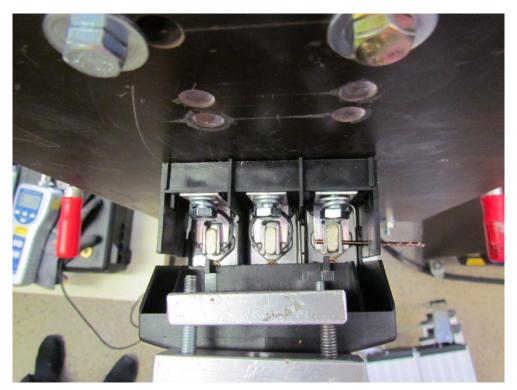


Photo 6: Test object TES-00/800 after the verification of the strength of actuator mechanism

Photo 7: Test object TES-1/800 after the verification of the strength of actuator mechanism

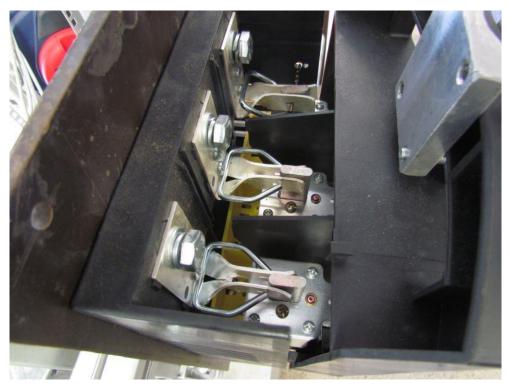
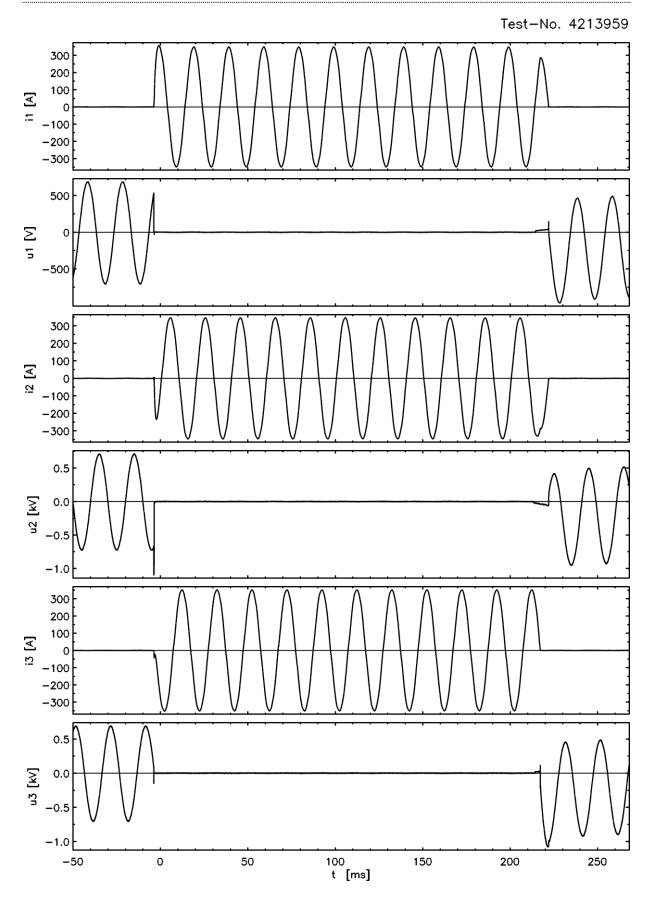
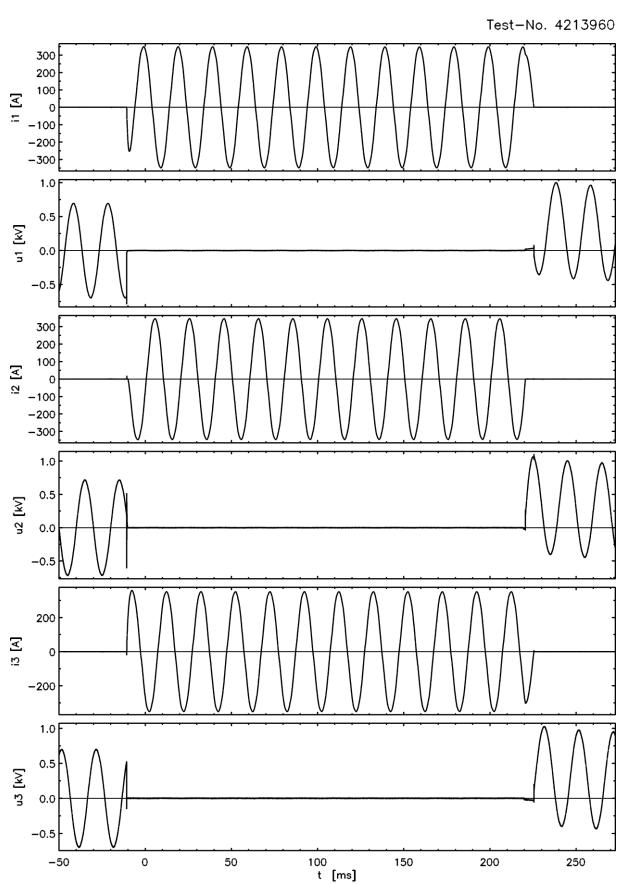
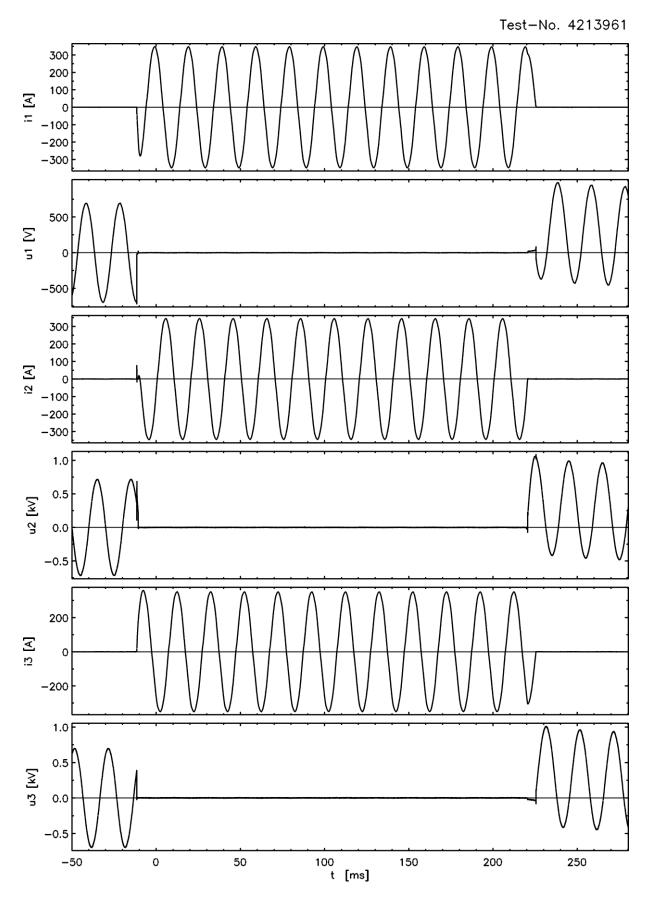


Photo 8: Test object TES-1/800 after the verification of the strength of actuator mechanism

Photo 9: Test object TES-00/800 during temperature-rise verification






Photo 10: Test object TES-1/800 during temperature-rise verification

6. Oscillograms

-200 -300 1.0

0.5

0.0

-0.5

300 200

₹ 0 ≅ -100 100

-200 -300

1.0

0.5

0.0

-0.5

200

0

-200

1.5

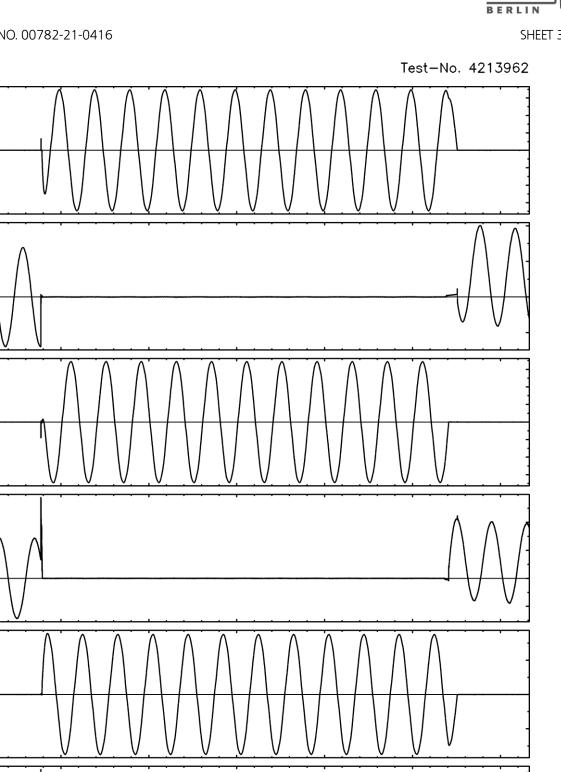
1.0

0.5 0.0

-0.5

-50

0

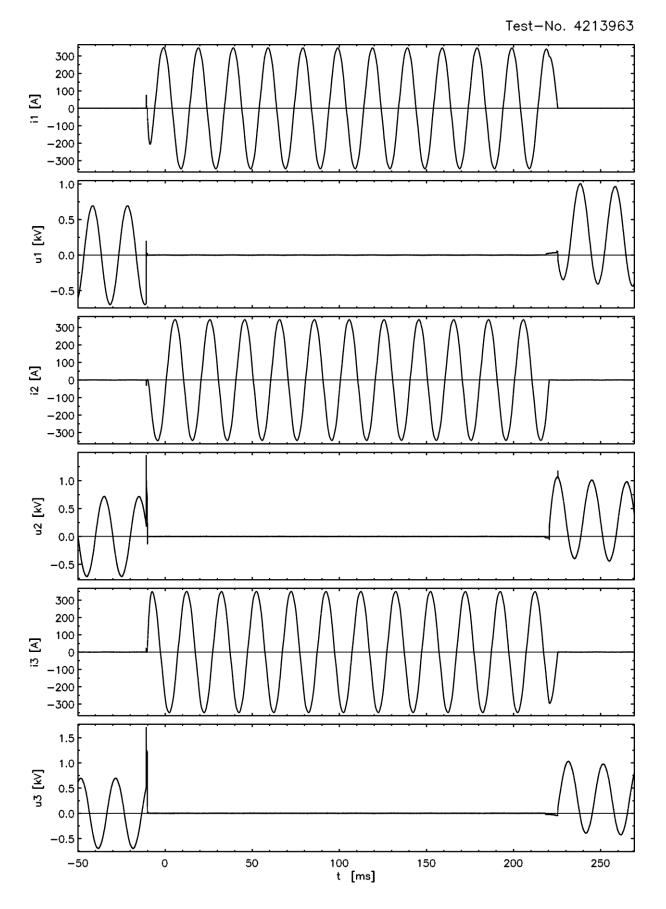

50

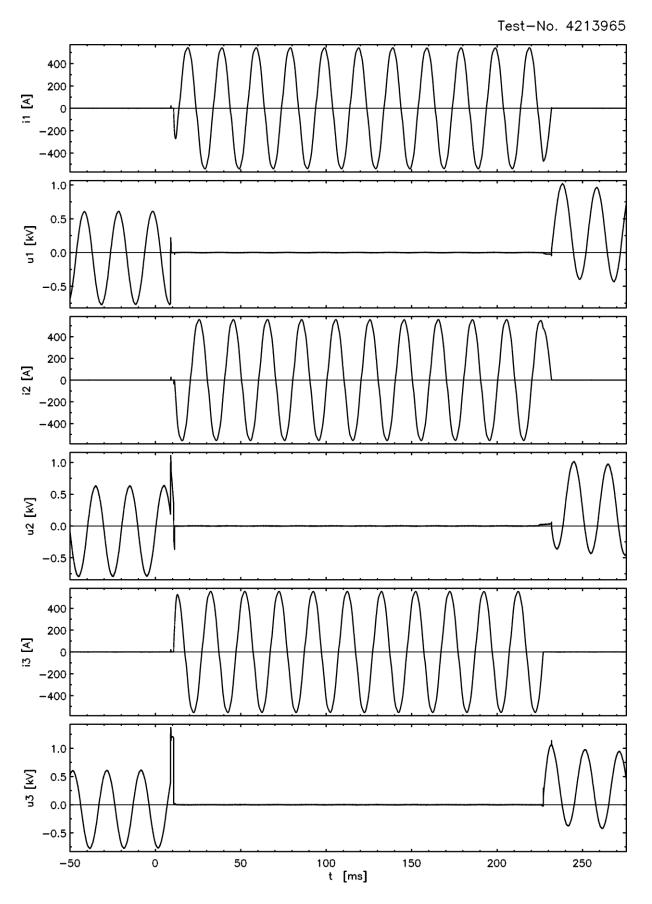
u2 [kV]

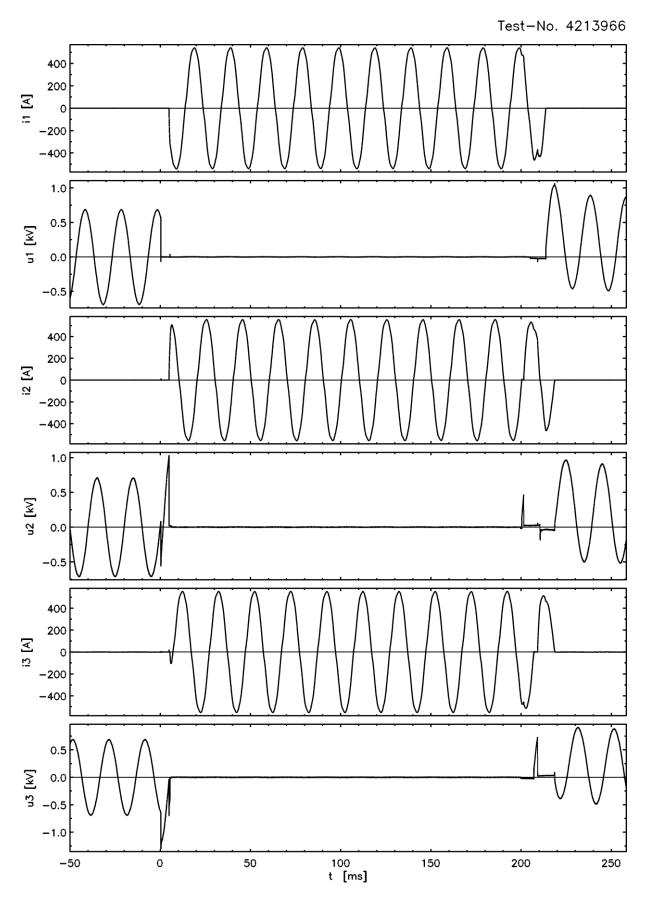
i3 [A]

u3 [kV]

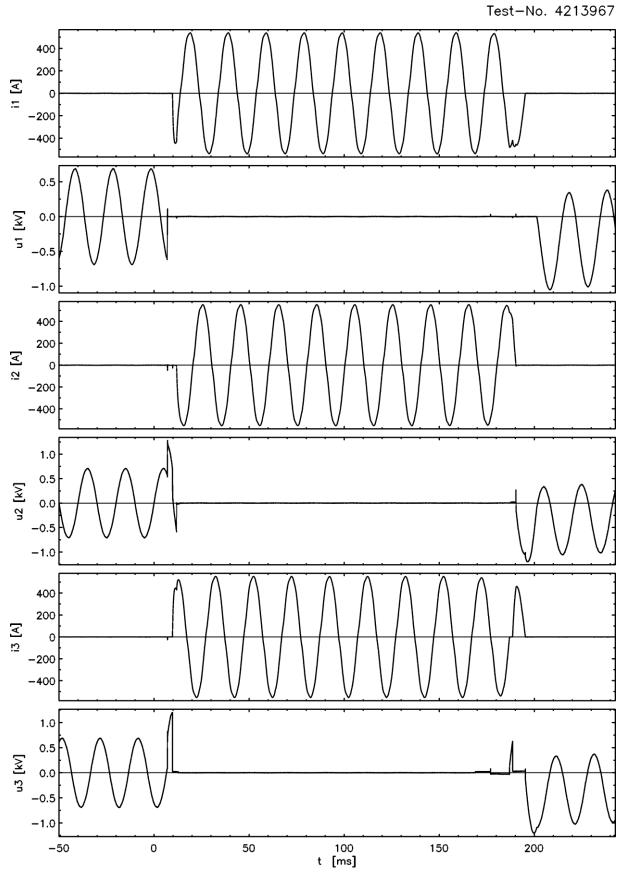
u1 [kV]

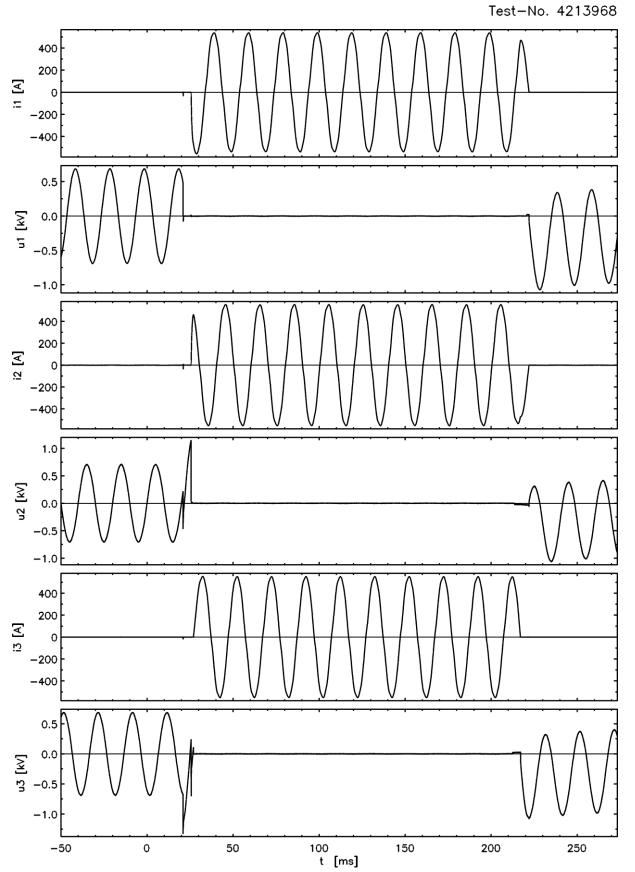

100 t [ms]

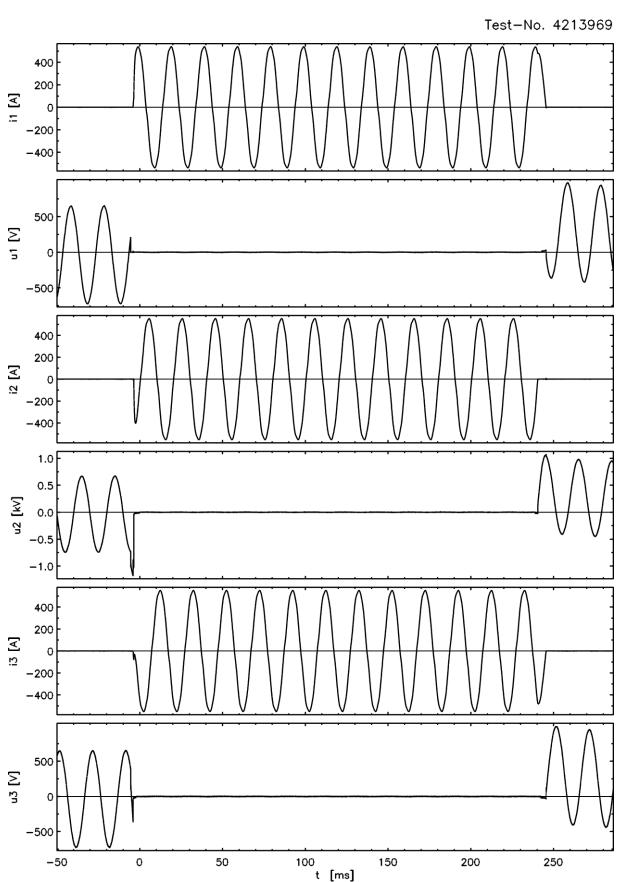

150


200

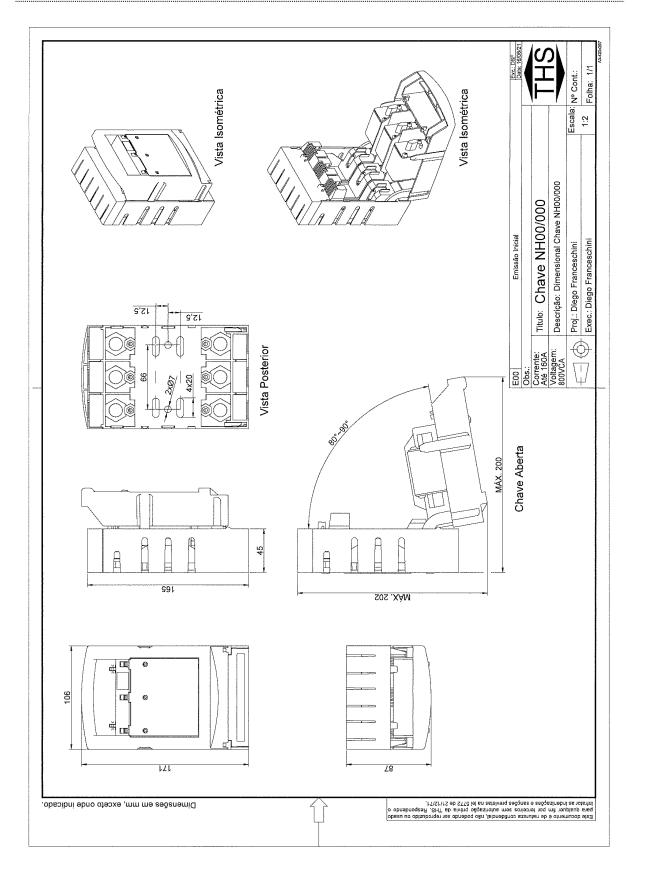
250

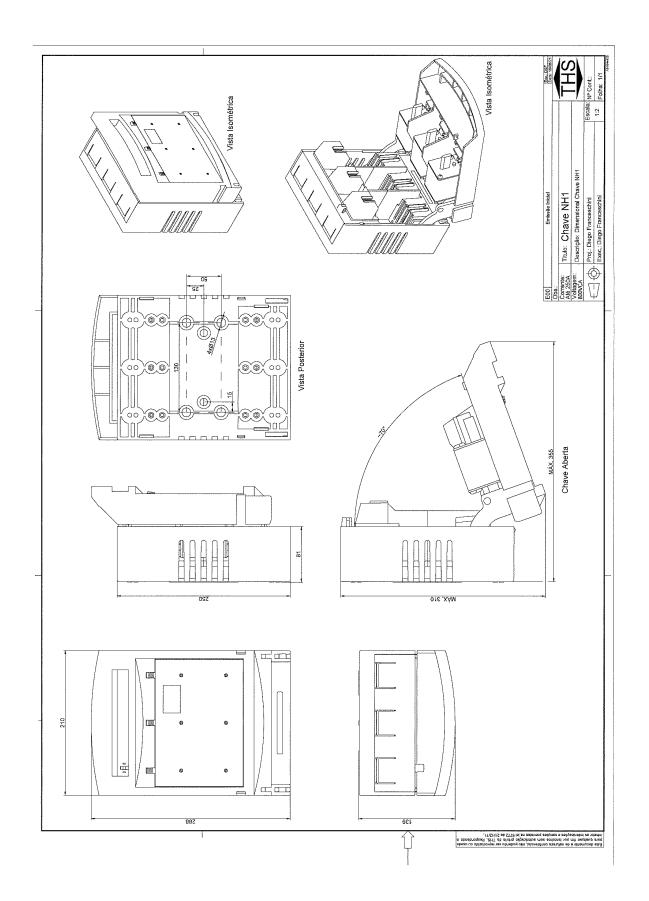

SHEET 33





TEST REPORT NO. 00782-21-0416




SHEET 39

7. Drawings

TEST REPORT NO. 00782-21-0416

Test Report

Document No.	02617-22-0038 Copy No. 1 Number of pages 23
Apparatus	LV-Photovoltaic Fuse
Designation	1. NH03-630 A and 500 A gL/gG 2. NH02-400 A; 350 A; 315 A; 250 A and 200 A gL/gG 3. NH01-160 A gL/gG 4. NH00-160 A gL/gG
Serial Number	Test samples
Manufacturer	THS Industria e Comercio Ltda. Rua Sargento Francisco Rodrigues da Rosa, 534 - Cajuru do Sul Sorocaba – Sao Paulo, 18105-008 BRAZIL
Client	THS Industria e Comercio Ltda. R. Francisco Rodrigues da Rosa, 534 - Cajuru do Sul Sorocaba - Sao Paulo, 18105-008 BRAZIL
Date(s) of test(s)	07 February 2022
Tested by	IPH Institut "Prüffeld für elektrische Hochleistungstechnik" GmbH Landsberger Allee 378A 12681 Berlin GERMANY
Test(s) performed	Verification of breaking capacity (Test duty I1) at 800 V a.c.

The apparatus, constructed in accordance with the description, drawings and photographs incorporated in this document has been subjected to the series of proving tests in accordance with: IEC 60269-2: 2013+AMD1: 2016

The fuses were capable of correctly breaking.

The results are documented in this test report. The ratings assigned by the Manufacturer are listed on the ratings page. The document applies only to the apparatus tested. The responsibility for conformity of any apparatus having the same designations with that tested rests with the Manufacturer.

17 February 2022

Date

Christian Kruscha Test Engineer in charge

Partial reproduction of this document is permitted only with the written permissions from CESI Group. The authenticity of this document is guaranteed by the integrity of hologram.

Trust the Power of Experience

Notes

STL-Member

CESI Group members are founder members of the SHORT-CIRCUIT TESTING LIAISON (STL) which has been established in 1969. STL is a forum for voluntary international cooperation of testing organizations.

CESI Group Test Documents description

Type Test Certificate of

Issued for type tests of high voltage products (> 1 kV_{ac}; > 1,5 kV_{dc}), which have successfully been carried out in full compliance with the relevant specifications or standards and STL Guides valid at the time of the test. The Type Test Certificate consists of documents unequivocally identifying the test object and describes all conditions under which the tests were conducted. It gives evidence of the unobjectionable behavior of the test object during the tests in line with the normative documents applied as well as of the results of successful testing.

Test Certificate of (complete / selected) Type Tests

Issued if type tests of low voltage products (< 1 kV_{ac} ; < 1,5 kV_{dc}) requested by the relevant product standard were passed. For these tests the equipment under test must be clearly identified by technical description, drawings, and additional specifications.

Certificate of Design Verification

Issued for passed design verification tests according to IEC 61439. For these tests the equipment under test must be clearly identified by technical description, drawings, and additional specifications.

Type Test Report

Issued for high and low voltage products if parts of selected type tests have been passed; those shall be carried out in full compliance with the relevant standards but (for high voltage products) do not fulfill all STL requirements for issuing a Type Test Certificate. For these tests the equipment under test must be clearly identified by technical description, drawings, and additional specifications.

Test Report

Issued for all other tests on high and low voltage products which have been carried out according to specifications, standards and/or client instructions

On-Site Test Record

Issued as a record of results acquired during the on-site tests / measurements

Test Award

Can be additionally issued for all named types of test documents above if the tests to be referenced were passed

B E R L I N SHEET 3

TEST REPORT NO. 02617-22-0038

Cont	tents	Sheet
1.	Present at the test	4
2.	Test performed	4
3.	Verification of breaking capacity	5
3.1	Test laboratory	5
3.2	Normative document	5
3.3	Required test parameters	5
3.4	Test arrangement	5
3.5	Test and measuring circuits	6
3.6	Test results	7
4.	Photographs	
5.	Oscillograms	11
6.	Drawings \checkmark technical data sheets (provided by the client)	

Distribution

Copy No.: 1

1. Present at the test

Mr. Kruscha

IPH test engineer in charge

2. Test performed

Verification of breaking capacity (Test duty I1) at 800 V a.c.

3. Verification of breaking capacity

3.1 Test laboratory

High-power test laboratory, high-current test bay

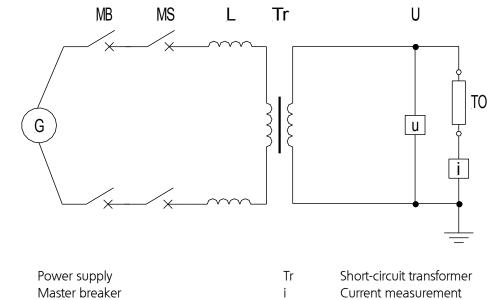
3.2 Normative document

IEC 60269-2: 2013+AMD1: 2016

3.3 Required test parameters

		222		
Power-frequency recovery voltage V		800		
Prospective current	kA	50		
Initiation of arcing after voltage zero		65 90° el		
Power factor		0.1 to 0.2		
Test frequency	Hz	50		
Maintained voltage after breaking	S	≥ 15		
Number of tests		1 test for each test sample		

3.4 Test arrangement


The breaking tests were performed with single-phase alternating current and with a single fuse. The fuse to be tested was mounted on a test rack in the normal service position.

3.5 Test and measuring circuits

Technical data of test circuits

Test requirement		Verification of breaking capacity
Test No.		122 0674 to 122 0684
Number of phases	(Test circuit)	2
Number of poles/pha	ses (Test object)	1
Test frequency	Hz	50
Earthing conditions	Generator, grid	Not earthed
	Short-circuit transformers	Earthed

MB	Master breaker	i	Current measurement
MS	Making switch	U	Voltage measurement
L	Current limiting reactor		

Figure 1: Test circuit diagram

Е

Technical data of measuring circuits

Measuring point	Symbol in the oscillograms	Measuring quantity	Measuring sensor/device		
1	i	Breaking current	Rogowski measuring device		
2	U	Voltage	RC divider		
Recording instrument: AD3000 multichannel transient recorder system					

3.6 Test results

Test requirement:	Test duty	11				
Condition of test object before test:	New					
Туре:	NH00 63	NH00 63 A gG				
Test No.	122	0675	0676	0677		
Test sample No.		1	2	3		
Type of of fuse-link		NH3	NH3	NH2		
Rated current of fuse-link	А	630	500	350		
Test voltage	V	800	800	800		
Prospective peak current	kA	107	107	107		
Prospective breaking current Ip	kA	51.9	51.9	51.9		
Power factor $\cos \phi$		0.25	0.25	0.25		
Making angle	°el.	62.6	51.6	47.2		
Initiation of arcing after voltage zero	°el.	97.6	85.4	71.0		
Melting current is	kA	41.5	38.5	25.9		
Cut-off current	kA	41.9	39.0	25.6		
Melting time	ms	1.93	1.87	1.32		
Arcing time	ms	3.68	4.21	4.74		
Operating time	ms	5.62	6.09	6.07		
Melting integral 10 ³	A ² s	1169	936	292		
Arcing integral 10 ³	A ² s	1760	1577	655		
Operating integral 10 ³	A ² s	2929	2513	947		
Arcing energy	kVAs	93.9	93.8	57.8		
Peak switching voltage	kV	1.77	1.81	1.71		
Recovery voltage	V	823	819	818		
Duration of power frequency recovery voltage	ge s	15	15	15		
Fuse operated correct	y∕n	У	У	У		
Emission of flames or sand	y∕n	n	n	n		
Damages (external)	y∕n	n	n	n		
Operation of striker correct	y∕n	У	у	У		
Evaluation		ОК	ОК	ОК		

.....

Notes:

OK - The fuse is capable of correctly breaking the prospective current

Test No. 122 0674: Current setting

Test results (continued)

Test requirement:	Test duty I1
Condition of test object before test:	New
Туре:	NH00 63 A gG

Test No.	122	0678	0679	0680
Test sample No.		4	5	6
Type of of fuse-link		NH2	NH2	NH2
Rated current of fuse-link	А	315	400	250
Test voltage	V	800	800	800
Prospective peak current	kA	107	107	107
Prospective breaking current I _p	kA	51.9	51.9	51.9
Power factor $\cos \varphi$		0.25	0.25	0.25
Making angle	°el.	57.8	58.1	51.8
Initiation of arcing after voltage zero	°el.	78.4	82.8	70.2
Melting current i₅	kA	24.4	29.4	20.5
Cut-off current	kA	25.0	29.1	20.9
Melting time	ms	1.14	1.37	1.02
Arcing time	ms	4.46	4.26	4.68
Operating time	ms	5.60	5.63	5.69
Melting integral 10 ³	A ² s	229	400	141
Arcing integral 10 ³	A ² s	624	866	396
Operating integral 10 ³	A ² s	853	1266	537
Arcing energy	kVAs	53.5	65.2	42.5
Peak switching voltage	kV	1.67	1.74	1.64
Recovery voltage	V	820	821	819
Duration of power frequency recovery voltage	S	15	15	15
Fuse operated correct	y∕n	У	У	У
Emission of flames or sand	y∕n	n	n	n
Damages (external)	y∕n	n	n	n
Operation of striker correct	y∕n	у	У	У
Evaluation		ОК	ОК	ОК

Notes:

OK - The fuse is capable of correctly breaking the prospective current

Test results (continued)

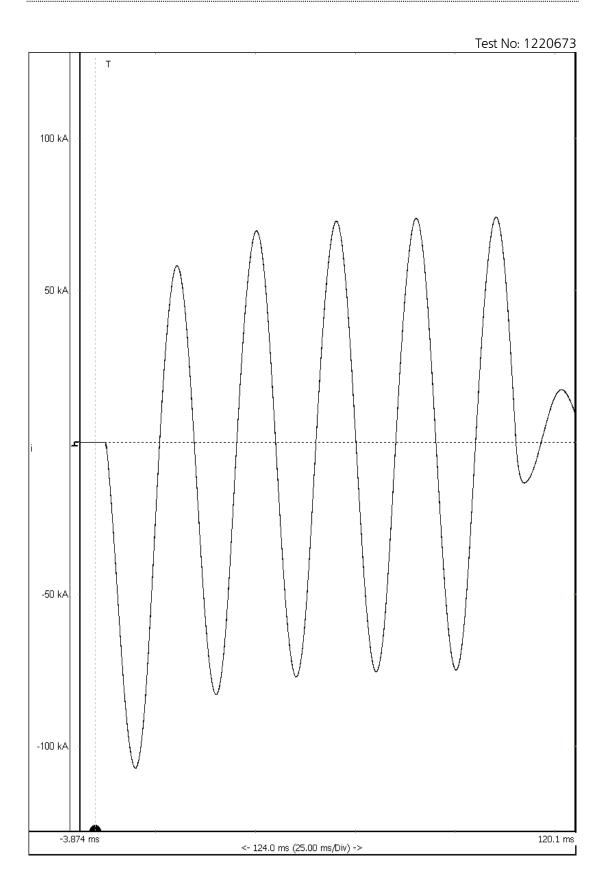
Test requirement:	Test duty I1		
Condition of test object before test:	New		
Туре:	NH00 63 A gG		

Test No.	122	0681	0682	0683
Test sample No.		7	8	9
Type of of fuse-link		NH2	NH1	NH00
Rated current of fuse-link	А	200	160	160
Test voltage	V	800	800	800
Prospective peak current	kA	107	107	107
Prospective breaking current I_p	kA	51.9	51.9	51.9
Power factor $\cos \phi$		0.25	0.25	0.25
Making angle	°el.	47.8	68.3	72.9
Initiation of arcing after voltage zero	°el.	65.4	79.6	84.5
Melting current is	kA	15.8	14.4	14.7
Cut-off current	kA	16.4	15.0	15.1
Melting time	ms	0.81	0.63	0.64
Arcing time	ms	5.06	4.27	4.26
Operating time	ms	5.88	4.89	490
Melting integral 1	0 ³ A ² s	66.8	43.5	47.8
Arcing integral 1	0 ³ A ² s	230	120	118
Operating integral 1	0 ³ A ² s	297	164	166
Arcing energy	kVAs	31.1	20.0	20.7
Peak switching voltage	kV	1.57	1.82	1.82
Recovery voltage	V	816	823	825
Duration of power frequency recovery vo	ltage s	15	15	15
Fuse operated correct	y⁄n	у	у	У
Emission of flames or sand	y∕n	n	n	n
Damages (external)	y⁄n	n	n	n
Operation of striker correct	y⁄n	у	у	У
Evaluation		OK	ОК	ОК

Notes:

OK - The fuse is capable of correctly breaking the prospective current

4. Photographs


Photo 1: Fuses after all tests, name plates

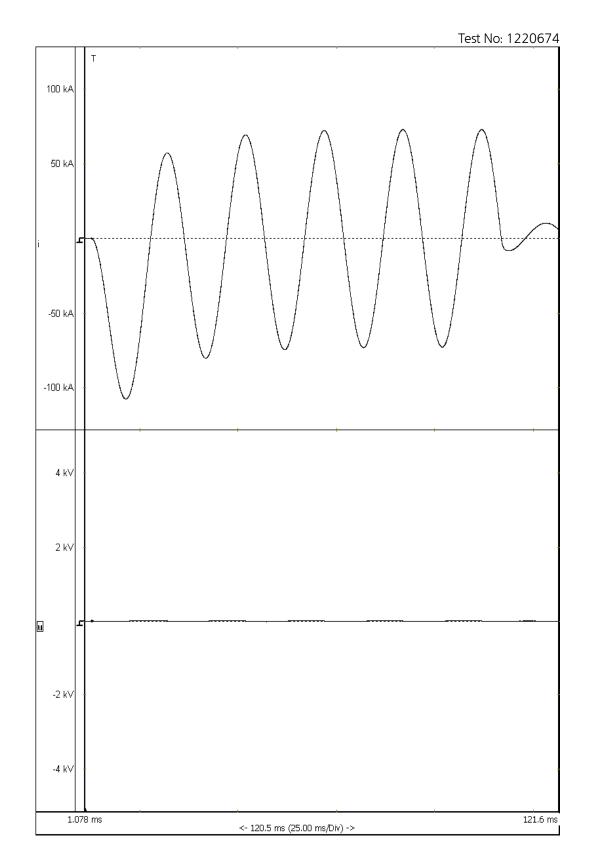
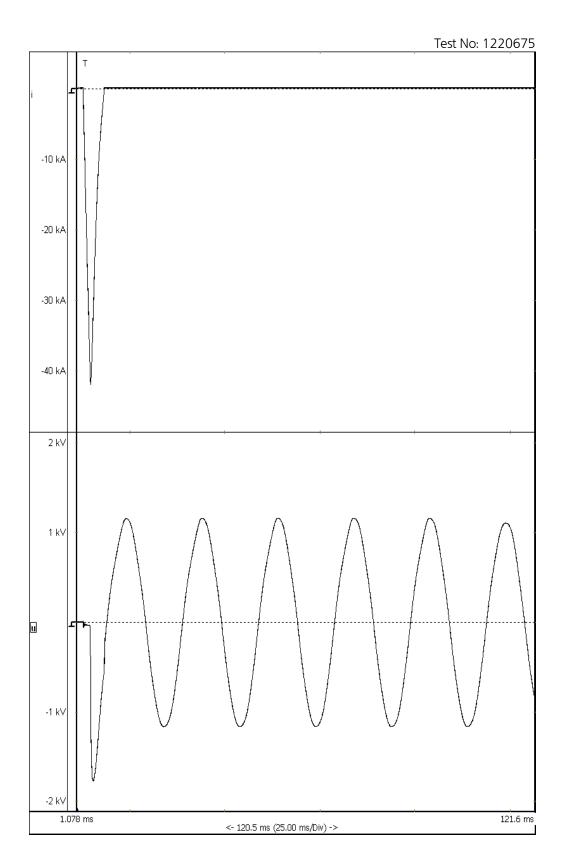
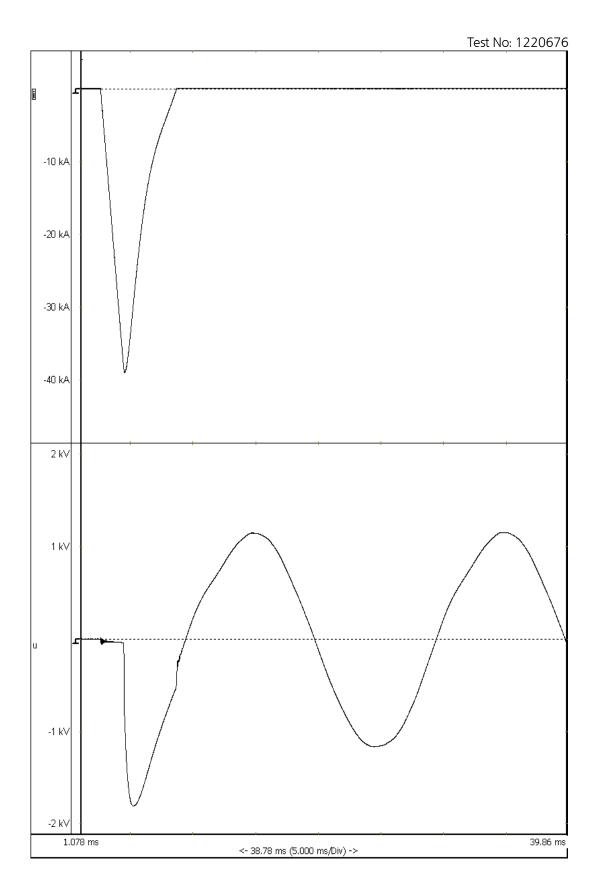
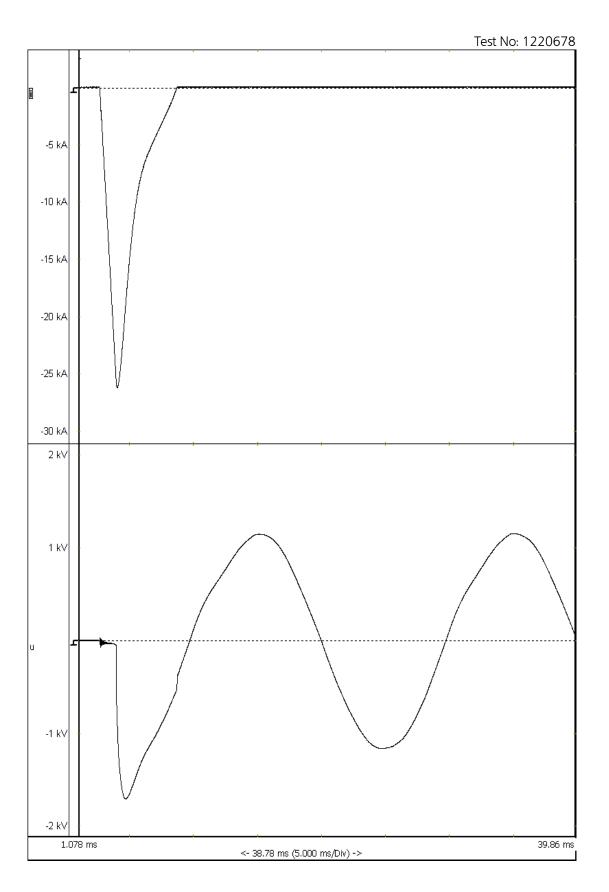


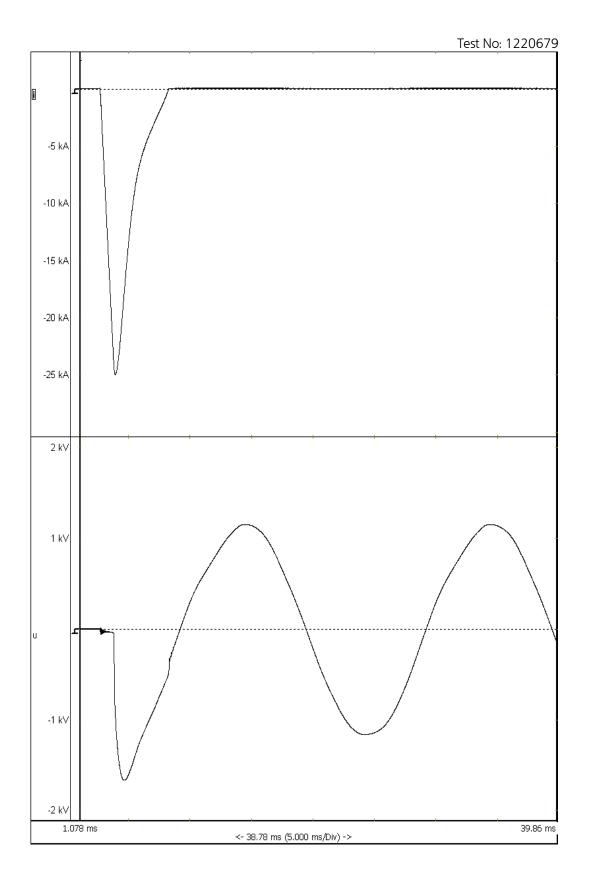
Photo 2: Fuses after all tests, rating plates

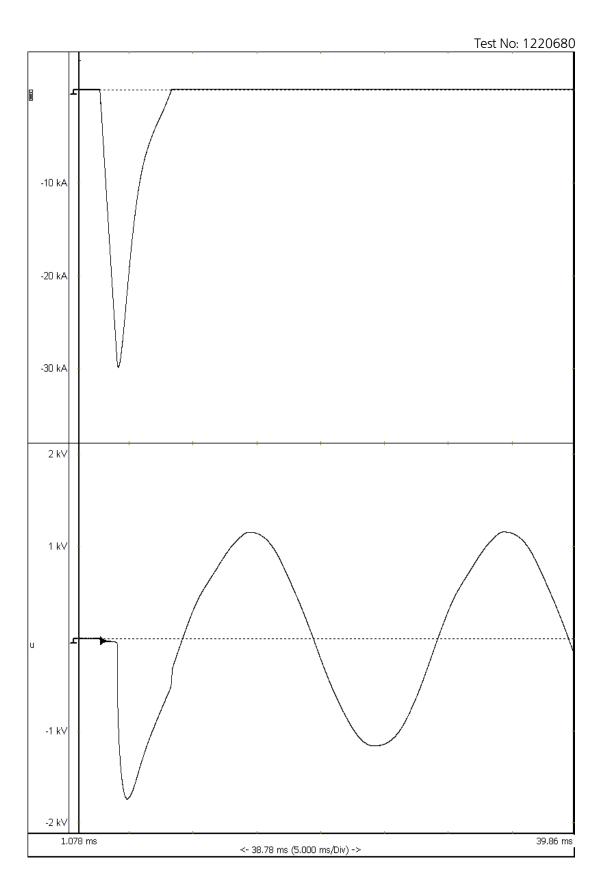


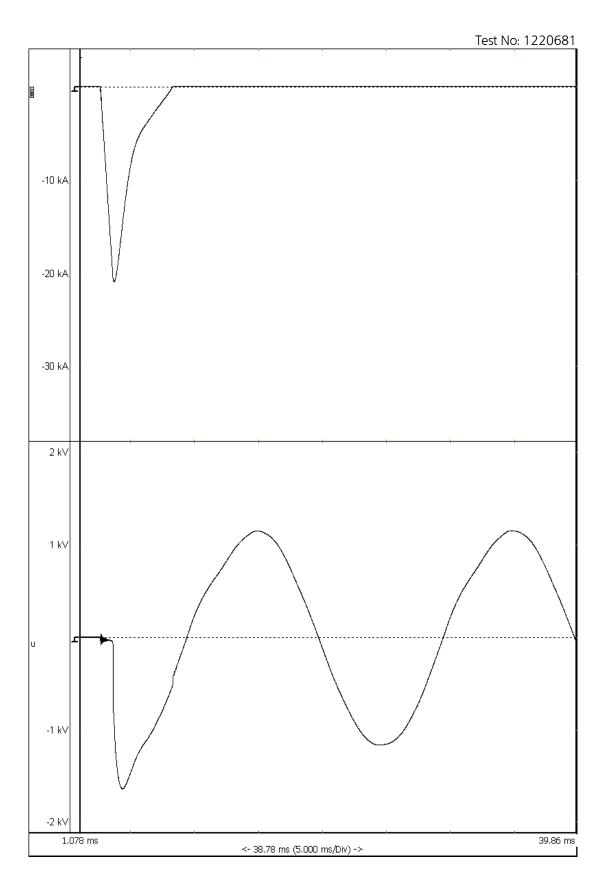
5. Oscillograms

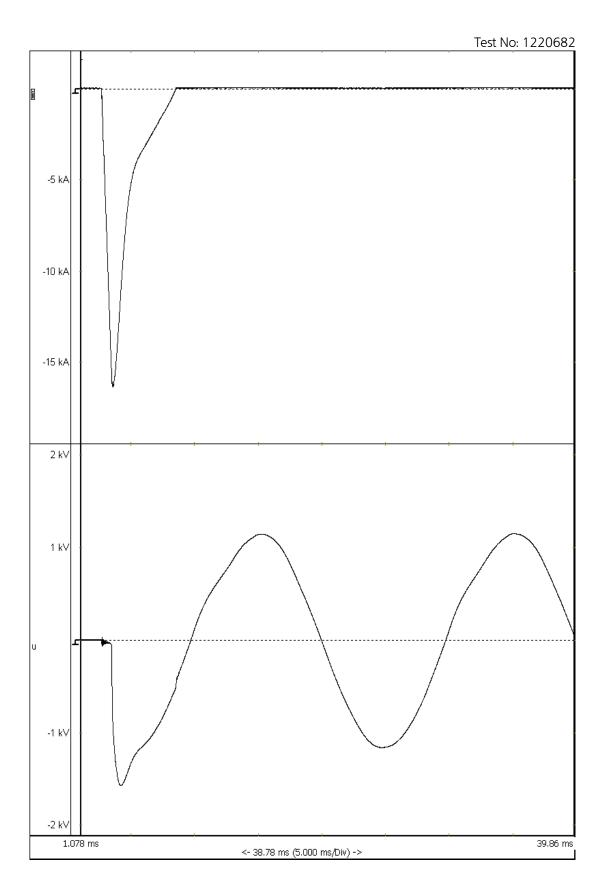


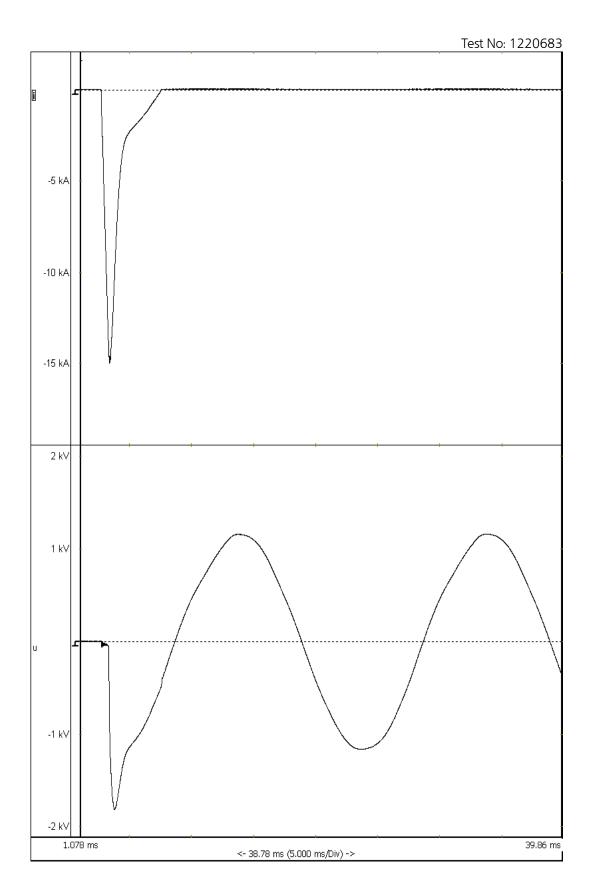


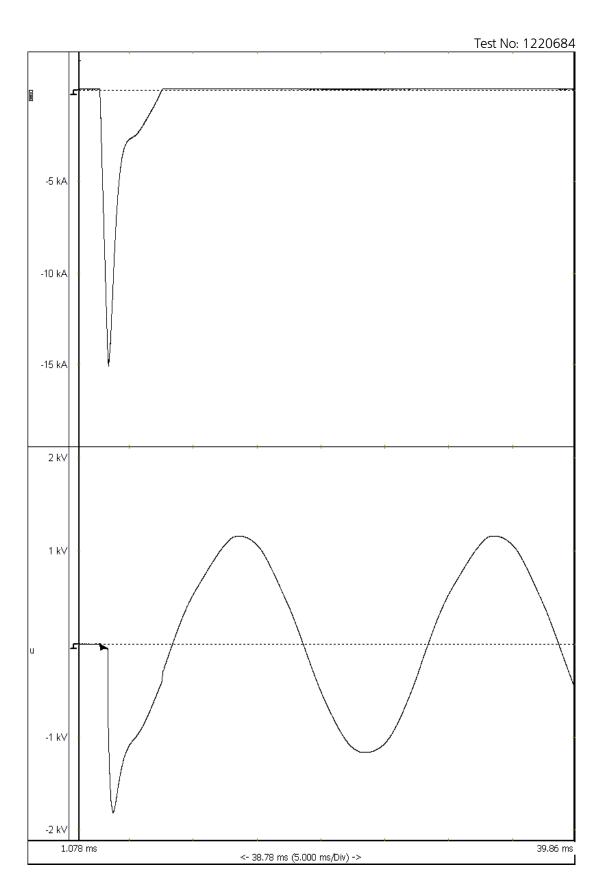

SHEET 13

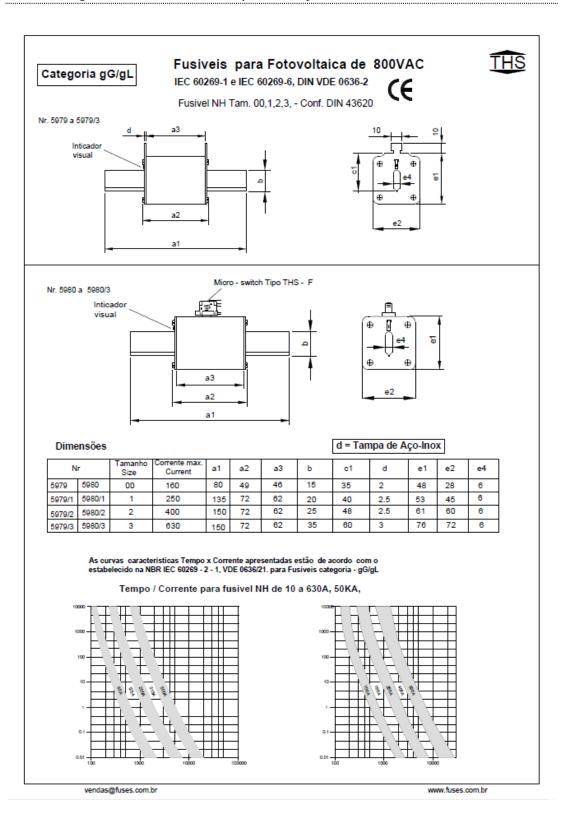












6. Drawings / technical data sheets (provided by the client)

